הפעם נתייחס להגדרת התשחץ: אומדן.
זוהי הגדרה בת 5 אותיות. אתר זה מספק עזרה בתשחץ לכן, התשובות האפשריות מפורטות מטה.
אנחנו מקווים שמצאתם את מה שחיפשתם והיינו לעזר! על כל שאלה, בקשה או כל דבר אחר צרו איתנו קשר או רשמו תגובה ואנו נעשה הכל כדי לעזור!
ממש נשמח אם תוכלו לעזור לנו להתפתח ולעשות לנו לייק!
אפשרויות: הערכה, שומה .
מידע רנדומלי על הביטוי "הערכה":
במתמטיקה ובמדעים, קירוב הוא ייצוג לא מדויק של ביטוי מתמטי, המתאים לשימוש כאשר דיוק מוחלט אינו אפשרי או אינו הכרחי. למרות שקירוב מתייחס בדרך כלל למספרים, אפשר ליישם אותו גם בהקשר של פונקציות, צורות וחוקים פיזיקליים. את הקירוב של a על ידי b מסמנים בסימן ≈, כך: a ≈ b.
לעתים נעשה שימוש בקירוב עקב קיומו של מידע חלקי בלבד המונע שימוש בייצוג המדויק של הביטוי המתמטי. בפיזיקה במיוחד, בעיות רבות מורכבות מדי לפתרון אנליטי מלא ולכן משתמשים בקירובים רבים לצורך פתרונן. לכן פעמים רבות גם בהינתן ייצוג מדויק לאותו הביטוי המתמטי, קירוב עשוי להניב פתרון מספיק מדויק תוך הפחתה משמעותית של מורכבות הבעיה.
סוג הקירוב שבשימוש תלוי במידע הזמין לביצוע הקירוב, במידת הדיוק הנדרש, במידת הרגישות של הבעיה לנתונים ובמשאבים הקיימים לביצוע הקירוב, שכן על פי רוב קירוב מדויק יותר דורש יותר זמן ומאמץ. הקירוב ייחשב למדויק יותר ככל ששגיאת הקירוב תהא קטנה יותר. לקירוב, אפילו כזה המופיע בחישוב על גב מעטפה, יש ערך בעיקר כאשר הוא מלווה בחסם של גודל השגיאה.
קירוב מספרים נעשה בדרך כלל על ידי עיגול המספר לדיוק מסוים (לערך שלם, לדיוק של שתי ספרות אחרי הנקודה וכיוצא בזאת). שגיאת הקירוב במקרה זה נקראת על פי רוב שגיאת עיגול. מספרים רציונליים ניתן להציג בדיוק מלא בכתיב כשבר עשרוני, ולכן ייצוגם בקירוב נעשה משיקולי נוחות. מספרים אירציונליים לא ניתן להציג בדיוק מלא בכתיב כשבר עשרוני, משום שמספר הספרות שלהם מימין לנקודה העשרונית הוא אינסופי ואינו מחזורי, ולכן הצגתם כשבר עשרוני מחייבת קירוב, שבו מוצגות רק הספרות הראשונות שמימין לנקודה העשרונית.
מידע רנדומלי על הביטוי "שומה ":
דף קטגוריה זה כולל את 16 הדפים הבאים, מתוך 16 בקטגוריה כולה. (לתצוגת עץ)
מידע רנדומלי על הביטוי "הערכה":
במתמטיקה ובמדעים, קירוב הוא ייצוג לא מדויק של ביטוי מתמטי, המתאים לשימוש כאשר דיוק מוחלט אינו אפשרי או אינו הכרחי. למרות שקירוב מתייחס בדרך כלל למספרים, אפשר ליישם אותו גם בהקשר של פונקציות, צורות וחוקים פיזיקליים. את הקירוב של a על ידי b מסמנים בסימן ≈, כך: a ≈ b.
לעתים נעשה שימוש בקירוב עקב קיומו של מידע חלקי בלבד המונע שימוש בייצוג המדויק של הביטוי המתמטי. בפיזיקה במיוחד, בעיות רבות מורכבות מדי לפתרון אנליטי מלא ולכן משתמשים בקירובים רבים לצורך פתרונן. לכן פעמים רבות גם בהינתן ייצוג מדויק לאותו הביטוי המתמטי, קירוב עשוי להניב פתרון מספיק מדויק תוך הפחתה משמעותית של מורכבות הבעיה.
סוג הקירוב שבשימוש תלוי במידע הזמין לביצוע הקירוב, במידת הדיוק הנדרש, במידת הרגישות של הבעיה לנתונים ובמשאבים הקיימים לביצוע הקירוב, שכן על פי רוב קירוב מדויק יותר דורש יותר זמן ומאמץ. הקירוב ייחשב למדויק יותר ככל ששגיאת הקירוב תהא קטנה יותר. לקירוב, אפילו כזה המופיע בחישוב על גב מעטפה, יש ערך בעיקר כאשר הוא מלווה בחסם של גודל השגיאה.
קירוב מספרים נעשה בדרך כלל על ידי עיגול המספר לדיוק מסוים (לערך שלם, לדיוק של שתי ספרות אחרי הנקודה וכיוצא בזאת). שגיאת הקירוב במקרה זה נקראת על פי רוב שגיאת עיגול. מספרים רציונליים ניתן להציג בדיוק מלא בכתיב כשבר עשרוני, ולכן ייצוגם בקירוב נעשה משיקולי נוחות. מספרים אירציונליים לא ניתן להציג בדיוק מלא בכתיב כשבר עשרוני, משום שמספר הספרות שלהם מימין לנקודה העשרונית הוא אינסופי ואינו מחזורי, ולכן הצגתם כשבר עשרוני מחייבת קירוב, שבו מוצגות רק הספרות הראשונות שמימין לנקודה העשרונית.
מידע רנדומלי על הביטוי "שומה ":
דף קטגוריה זה כולל את 16 הדפים הבאים, מתוך 16 בקטגוריה כולה. (לתצוגת עץ)